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ABSTRACT
In the present paper Shannon’s Inequality and its two generalizations are defined.
Two new generalized mean code word lengths are introduced and their bounds in
terms of the generalized measures of entropies are studied by applying the new
two generalizations of Shannon’s inequality thus obtained. Particular cases are also
discussed with a list of references in the end.
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1. Introduction

Let ∆n = {P = (p1, p2, . . . . . . pn) ; pi ≥ 0,
∑n

i=1 pi = 1} , n ≥ 2 be a set of n-complete
distributions defined on a random variable X. Then for P ∈ ∆n, Shannon’s entropy
(1948) is

H(P ) = −
n∑
i=1

pi log pi (1)

The measure (1) has been studied and generalized by many authors. It has found a
wide applications in various disciplines of social, biological and physical sciences.

Harvda and Charvat (1967) characterized non- additive generalized Entropy of de-
gree α as given below:

Ha(P ) =
1

1− α

(
n∑
i=1

pai − 1

)
, α > 0, and α ̸= 1. (2)

Further, Sharma and Mittal (1975) also characterized the following non-additive
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entropy of order α and type β :

Hf
a (P ) =

1

21−β − 1

( n∑
i=1

pai

) β−1

α−1

− 1

 , α, β > 0.α ̸= β and α ̸= 1 (3)

Without loss of generality (3) can also be written as

Hρ
a(P ) =

1

1− β

( n∑
i=1

pai

) β−1

α−1

− 1

 (4)

For P,Q ∈ ∆n, Kerridge (1961) introduced inaccuracy measure α defined as

H(P | Q) = −
n∑
i=1

pi log qi (5)

A relation between H(P) and H(P | Q) is known as Shannon’s inequality is given
below:

H(P ) ≤ H(P | Q) (6)

The Shannon’s inequality given by (6) can be generalized in so many ways.
Using the method of Campbell (1965), Lubbe (1978) generalized (6) for the case of

entropy of order α and type β. Thus, two new generalizations of (6) are defined and
their applications in source coding are studied.

2. First Generalization of Shannon’s Inequality

For P,Q ∈ ∆n, we define a generalized measure of inaccuracy as given by

Hα(P | Q) =
1

1− α

[(
n∑
i=1

piq
α−1
i

)α
− 1

]
, α > 0, α ̸= 1 (7)

Since (7) reduces to (5) when α → 1, therefore, it is a generalized measure of
Kerridge’s inaccuracy. It may be noted that when pi = qi, (7) reduces to the generalized
entropy of degree α as given below:

Hα(P ) =
1

1− α

[(
n∑
i=1

pai

)α
− 1

]
, α > 0, α ̸= 1 (8)

which is different from (2). However, it reduces to (1), when α → 1. Hence (7) is a
new generalized measure of entropy of degree α different from Harvard and Charvat’s
entropy.

Next we prove a theorem to establish an inequality between (2) and (7).
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Theorem 2.1. For P,Q ∈ ∆n, the following inequality between (2) and (7) holds:

Ha(P ) ≤ Hω(P | Q) (9)

Under the condition

n∑
i=1

qπi ≤ 1 (10)

It may noted that the equality holds in (9) if qi = pi/ (
∑n

i=1 p
a
i )

1

a , i = 1, 2, 3, . . . . . . n

Proof. Case (a) When 0 < a < 1. By Holder’s inequality we know(
n∑
i=1

xpi

) 1

p

·

(
n∑
i=1

yqi

) 1

q

≤
n∑
i=1

xiyi, (11)

Where all xi, yi > 0, i = 1, 2, 3, 4, . . . . . . . . . ..n and 1/p + 1/q = 1, such that either
(p ̸= 0) < 1, q < 0 or q < 1(̸= 0), p < 0. It may be noted that equality holds if and if
there exists a positive constant c such that

xpi = cyqi (12)

On substituting p = α−1
α , xi = p

α

α−1

i · qαi ; q = 1− α, yi = p
α/1−α
i in (11), we get

(∑
piq

α−1
i

)α/α−1
(

n∑
i=1

pαi

)1/1−α

≤
∑

p
α/α−1
i qαi p

α/1−α
i =

n∑
i=1

qαi ≤ 1 (13)

It implies

(∑
piq

α−1
i

)α/α−1
≤

(
n∑
i=1

pαi

)1/α−1

(14)

Since α < 1, therefore, by raising power α − 1 and subtracting 1 from both sides,
we have

(∑
piq

α−1
i

)α
− 1 ≥

(
n∑
i=1

pαi − 1

)

or

1

1− α

[(
n∑
i=1

piq
α−1
i

)α
− 1

]
≥ 1

1− α

(
n∑
i=1

pαi − 1

)

or

Hα(P ) ≤ Hα(P | Q) (15)
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Case (b) When α > 1. In this case (14) can be written as
(
Σpiq

α−1
i

)α ≤ Σpαi
Subtracting 1 from both sides and multiplying 1

1−α we have

1

1− α

[(
n∑
i=1

piq
α−1

)α
− 1

]
≥ 1

1− α

(
n∑
i=1

pαi − 1

)

or

Hα(P ) ≤ Hα(P | Q) (16)

From (15) and (16) we conclude that the generalized inequality (9) holds. We see
that (9) reduces to (6) when α → 1.

3. Application of First Generalized Shannon’s Inequality

Let a finite set of n input symbols with probabilities p1, p2, . . . . . . . . . , pn be encoded in
terms of code alphabets {a1, a2, . . . . . . , aD}. Then there exists a uniquely decipherable
code with lengths l1, l2, ..., ln (Refer Feinstein (1958)) iff

n∑
i=1

D−i ≤ 1 (17)

and

L =

n∑
i=1

pili (18)

where (18) is the average code word length of the code. Further, it has been shown
[refer to Feinstein (1958)] that

H(P ) ≤ L (19)

with the inequality if and only if li = − log pi, i = 1, 2,..., n. The inequality (17) is
known as Kraft’s inequality.

Next, we define a generalized mean code word length as given below:

Lα(P ) =
1

1− α

[(
n∑
i=1

piD
−ψ(1)(−α)

)α
− 1

]
, where α > 0, α ̸= 1 (20)

Next we prove a theorem on bounds of (20) in terms of (8) applying the generalized
inequality given by (9).

Theorem 3.1. Let li, t = 1, 2, 3, . . . . . . , n be lengths of code words, satisfying the
following generalized Kraft inequality for uniquely decipherable code:

n∑
i=1

D−αti ≤ 1, α > 0 (21)
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Then the following inequality holds:

Hα(P ) ≤ Lα(P ) < Dα(1−α)Hα(P ) + (1− α)−1 ·
(
Dα(1−α) − 1

)
(22)

Proof. Choosing qi = D−ti in (2.3) for each i , we get

Hα(P ) ≤ Lα(P ), (23)

The equality holds iff D−ii = pi(∑nip
2
i

i=1

)1/α , i = 1, 2, . . . . . . . . . , n

Let us choose li such that − logD

(
pi

(
∑n

m=1 p
q
1)

1/α

)
≤ li < − log

(
pi

(
∑n

i=1 p
q
i )

1/α

)
+ 1.

Then we have

D−ti >
pi(∑n

i=1 p
i
i

)1/αD
(24)

Here again two cases arise
Case (a) When 0 < α < 1, then raising power α − 1 to both side of (24) we have

Dti(1−α) < pα−1
1

(
∑n

i=1 p
α
i )

α−1αDα−1
, since 1−α is negative.

It implies

n∑
i=1

piD
L(1−α) <

(
n∑
i=1

pαi

) 1

α

D1−α (25)

Raising power α and subtracting 1 from both sides, we have(
n∑
i=1

piD
i(1−α)

)α
− 1 <

n∑
i=1

pαi D
α(1−α) − 1 =

n∑
i=1

pαi D
α(1−α) −Dα(1−α) +Dα(1−α) − 1

= Dα(1−α)

[
n∑
i=1

pαi − 1

]
+Dα(1−α) − 1

Multiplying by (1− α)−1 > 0 throughout, we get

Lα(P ) < Dα(1−α)Hα(P ) + (1− α)−1
(
Dα(1−α) − 1

)
(26)

Case (b) can be obtained on the same lines. Hence Theorem 3.1 is proved.
Particular Case:

When α = 1,(3.6) reduces to −
∑n

i=1 pi log pi ≤
∑n

i=1 pili < −
∑n

i=1 pi log pi + 1,
which is well known Shannon’s Noiseless Coding Theorem.
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4. Second Generalization of Shannon’s Inequality

For P,Q ∈ ∆n, we define another generalized measure of inaccuracy as given by

Hα
β (P | Q) =

1

1− β

( n∑
i=1

p
a2−α+1

α

i

q

1 α−1

α

)( ρ−1

a−1)α

− 1

 , α > 0, α ̸= β, β > 1. (27)

When β → 1, (27) reduces to

Ha(P | Q) =
α

1− α
log

(
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)
. (28)

Since (28) reduces to (5), when α → 1, therefore, (28) is a new generalized measure
of inaccuracy of order α. Thus, we call (27) as the generalized measure of inaccuracy
of order α and degree β.

It is interesting to note that when pi = qi for each i and β → α, (27) reduces to

Hα(P ) =
1

1− α

[(
n∑
i=1

pαi

)α
− 1

]
, (29)

which is (8) and further it reduces to (1), when α → 1.

Theorem 4.1. For P,Q ∈ ∆n, the following holds

Hα
β (P ) ≤ Hα

β (P | Q) (30)

under the condition

n∑
i=1

pα−1
i qi ≤ 1, when a > 0 (31)

and equality holds if qi =
pi∑n2
1

i=1 p
2
i

, i = 1, 2, . . . . . . . . . n, where Hρ
a(P ) and Hρ

a(P | Q)

are given by (4) and (27) respectively.

Proof. Here also two cases arise

(a) 0 < α < 1, β > 1 (b) α ≥ 1, β > 1

Case(a). When 0 < α < 1, β > 1, then by Holder’s inequality(
n∑
i=1

xpi

)1/p

· (yqi )
1/q ≤

n∑
i=1

xiyi (32)

For all xi, yi > 0, t = 1, 2, . . . . . . . . . .n and 1
p +

1
q = 1, Such that either (p ̸= 0) < 1

and q < 0 or q(̸= 0) < 1 and p < 0. It may be seen that equality holds if and only if
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there exists a positive constant c such that

xpi = cypi

On substituting p = α−1
α , xi = p

α2−α+1

α−1

i qi, q = 1 − α and yi = p
α/1−α
i in (32), we

get (
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)α/α−1

·

(
n∑
i=1

pαi

)1/1−α

≤
n∑
i=1

pα−1
i q, α > 0, α ̸= 1

Using the condition (31), we have(
n∑
i=1

p
a2−α+1

α

i q
α−1

α

i

)α/α−1

·

(
n∑
i=1

pαi

)1/1−α≤1

or (
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)α/α−1

≤

(
n∑
i=1

pαi

)1/α−1

Raising power α− 1 to both sides, we get(
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)α
≥

n∑
i=1

pαi , (33)

since α < 1 is negative. Raising power ρ−1
α−1 < 0 and subtracting 1 from both sides, we

have (
n∑
i=1

p
a2−α+1

α

i q
α−1

α

i

)( ρ−1

α−1)α

− 1 ≤

(
n∑
i=1

pαi

) ρ−1

α−1

− 1 (34)

Multiplying both sides by (1− β)−1 < 0, we get

Hα
β (P ) ≤ Hα

β (P/Q), which is (30).

Case (b) when α ≥ 1, β > 1, then substituting

p = α−1
α , xi = p

α2−α+1

α−1

i qi, q = 1− α and yi = p
α/1−α
i in (32) we get

(
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)α/α−1

·

(
n∑
i=1

pαi

)1/1−α

≤
n∑
i=1

pα−1
i qi ≤ 1

It implies

(∑n
i=1 p

α2−α+1

α

i q
α−1

α

i

)α/α−1

≤ (
∑n

i=1 p
α
i )

1/α−1

113



Asian European Journal of Probability and Statistics D S Hooda

Raising power α− 1 to both sides, we get(
n∑
i=1

p
a2−α+1

α

i q
α−1

α

i

)α
≤

n∑
i=1

pαi , since α ≥ 1 (35)

Raising power β−1
α−1 > 0 to both sides and subtracting 1 from both sides, we have

(
n∑
i=1

p
α2−α+1

α

i q
α−1

α

i

)( β−1

α−1)α

− 1 ≤

(
n∑
i=1

pαi

) β−1

α−1

− 1.

Multiplying both sides by (1− β)−1 < 0, we get (30). Hence the theorem is proved
for both cases.

5. Application of Second Generalized Shannon’s Inequality in Source
Coding

In this section we study an application of Theorem 4.1 in source coding. Let us define
a generalized mean code word length as given below:

Lβα(P ) =
1

1− β

( n∑
i=1

p
α3−α+1

α

i Dt( |−α

α )

)( β−1

α−1)a

− 1

 , where α, β > 0, α ̸= β, α ̸= 1 ̸= β

(36)
Next we prove a theorem on the bounds of (36) in terms of (27) using the generalized

inequality (30).

Theorem 5.1. Let li, i = 1, 2, 3 . . . . . . n be the lengths code of words satisfying the
following generalized Kraft inequality:

n∑
i=1

pα−1
i ·D−ti ≤ 1, when α > 1 and α ̸= 1 (37)

Then the following condition holds

Hα
β (P ) ≤ Lαβ(P ) < D1−βHα

β (P ) + (1− β)−1 ·
(
D1−β − 1

)
, (38)

where Hα
β (P ) and Lαβ(P ) are given by (4) and (36) respectively.

Proof. Substituting qi = D−li in (30), we have
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Hα
β (P ) ≤ 1

1−β

[(∑n
i=1 p

α2−α+1

α

i D−li( 1−α

α )
)( β−t

α−1)α
− 1

⌋
. It implies

Hβ
α(P ) ≤ Lβα(P ), (39)

Thus, the first part of (38) is proved.

The inequality holds if Dti = pi∑n
i=1 p

α
i
, i = 1, 2, 3, . . . . . . . . . , n and

li = − logD pi + logD

[
n∑
i=1

pαi

]
; i = 1, 2, 3, . . . . . . ..n (40)

Next we choose li such that

− logD
pi∑n
i=1 p

α
i

≤ li < − logD
pi∑n
i=1 p

α
i

+ 1

and prove

D−li >
pi∑n

i=1 p
ααD
i

(41)

Here two cases arise: (a) 0 < α < 1, β > 1 (b) α > 1, β > 1

Case (a) When 0 < α < 1, and β > 1, then raising power α−1
α to both sides of

(41), we get

D−ti( 1−α

α ) <
p

α−1

α

i

(
∑n

i=1 p
α
i )
α−1/α

Multiplying by p
a2−α+1

α

i both sides and taking summations over i, we have

n∑
i=1

p
α2−α+1

α

i Dt( 1−α

α ) <

∑n
i=1 p

α
i

(
∑n

i=1 p
α
i )

α−1

α D(α−1

α )

And that implies
∑n

i=1 p
α2−α+1

α

i Dl( i−α

α ) < (
∑n

i=1 p
α
i )

1/αD( 1−α

α )

Raising power α
(
β−1
α−1

)
< 0 and subtracting 1 from both sides, we get

(
n∑
i=1

p
α2−α+1

α

i Dll( 1−α

α )

)( β−1

α−1)α

− 1 >

(
n∑
i=1

pαi

) β−1

α−1

·D1−β − 1

= D1−β

[
n∑
i=1

pαi

) β−1

α−1

− 1

+D1−β − 1 (42)
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Multiplying both sides by (1− β)−1 < 0, we get

Lαβ(P ) < D1−β ·Hα
β (P ) + (1− β)−1

(
D1−β − 1

)
(43)

which is second part of (38). Hence Theorem (36) is proved.

Case (b) can be obtained on the same lines.

Particular Cases

(i) If β = α, then (38) reduces to

Hα(P ) ≤ Lα(P ) < D1−αHα(P ) + (1− β)−1 ·
(
D1−α − 1

)
, (44)

where Hα(P ) = (1−α)−1 [
∑n

i=1 p
α
i − 1] , α > 0, α ̸= 1, is Harvada and Charvat (1967)

entropy and

Lα(P ) = (1− α)−1

[(
n∑
i=1

p
α2−α+1

α

i D−li(α−1

α )

)α
− 1

]
, α > 0, α ̸= 1

is new code word length.

(ii) If β → 1, then (38) becomes

Hα(P ) ≤ Lα(P ) < Hα(P ) + logD,

where Hα(P ) = 1
1−α logD

∑n
i=1 p

α
i , α( ̸= 1) > 0, is Renyi’s (1961) entropy and

Lα(P ) =
α

1− α
logD

n∑
i=1

p
α2−α+1

α

i D−li(α−1

α ), α( ̸= 1) > 0.

is another new mean codeword length.
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